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Abstract The increasing rates of forest cover 
change and heightened vulnerability to deforesta-
tion present significant environmental challenges in 
Northeast India. This study investigates the dynam-
ics of forest cover change and susceptibility to defor-
estation in this region from 2001 to 2021, utilizing 
data from the Hansen Global Forest Change (HGFC) 
product on the Google Earth Engine (GEE) platform. 
A suite of multicriteria decision-making (MCDM) 
models—including VlseKriterijumska optimizacija 
I Kompromisno Resenje (VIKOR), Simple Addi-
tive Weighting (SAW), Evaluation Based on Dis-
tance from Average Solution (EDAS), and Weighted 
Aggregates Sum Product Assessment (WASPAS)—
was employed to assess changes in forest cover and 

deforestation susceptibility across varied zones. Mul-
ticollinearity tests confirmed the relevance of the fac-
tors influencing deforestation. Statistical validations, 
such as the Wilcoxon Signed Ranks Test, underscored 
the models’ robustness, revealing statistically sig-
nificant outcomes. Additionally, Receiver Operat-
ing Characteristic (ROC) curve and Area Under the 
Curve (AUC) analysis demonstrated the superior fit of 
the VIKOR model (AUC = 0.938) compared to SAW 
(AUC = 0.901), EDAS (AUC = 0.895), and WASPAS 
(AUC = 0.864) in predicting current deforestation 
susceptibility. Validation affirmed the reliability of all 
MCDM methods, with VIKOR displaying high sensi-
tivity (True Positive Rate, TPR = 0.878) and optimal 
AUC (0.938). Correlation analyses among the mod-
els identified significant inter-relationships, notably 
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a positive correlation between EDAS and SAW, and 
a negative correlation between VIKOR and SAW. 
The regions of Assam, Nagaland, Mizoram, and 
Arunachal Pradesh were identified as experiencing 
significant forest cover loss, indicating a pronounced 
susceptibility to future deforestation. These findings 
underscore the need for immediate intervention to 
address this critical environmental issue.

Keywords Analytical Approaches · Google Earth 
Engine · Hansen Global Forest Change · Biodiversity 
threats · Developmental pressures · Explanatory 
factors

Introduction

In recent decades, deforestation and environmental 
degradation have emerged as pressing global con-
cerns, with significant threats from climate change 
and human activities increasingly jeopardizing for-
est ecosystems and exacerbating environmental risks 
for ecosystems and human societies (Basu & Basu, 
2023; Chen et al., 2024; Shah et al., 2024). Character-
ized by the Food and Agriculture Organization (2022) 
as a significant reduction in the quantity and quality 
of forest biological resources, deforestation has far-
reaching consequences including reduced biodiversity, 
increased pollution, global warming, climate change, 
soil erosion, and disruption of the water cycle (Santos 
et al., 2021). With forests sequestering approximately 
662 billion tonnes of carbon and contributing around 
USD 1.52 trillion to the global gross domestic prod-
uct, supporting the livelihoods of about 33 million 
people worldwide, the last three decades (1990–2020) 
have seen around 420 million hectares deforested, 
predominantly in tropical regions (Mo et  al., 2023). 
This makes identifying the causes of deforestation and 
areas susceptible to it crucial for formulating effec-
tive mitigation measures, afforestation strategies, 
and policies (Abugre & Sackey, 2022; Dagar et  al., 
2023; Forest Resources Assessment, 2020; Kumar 
et al., 2014; Kumari et al., 2019; Mishra & Francav-
iglia, 2021; Schug et  al., 2023). Recognizing these 
challenges, this study introduces a novel approach by 
employing Multicriteria Decision-Making (MCDM) 
models to analyze the drivers of forest cover change 
and deforestation susceptibility in Northeast India—
a region of ecological significance and considerable 

environmental challenges. The integration of MCDM 
in forest conservation, particularly in this complex 
and understudied region, represents an innovative 
stride toward a holistic understanding of deforestation 
impacts and the development of more effective con-
servation strategies.

While numerous studies have leveraged remote 
sensing datasets and geographical information sys-
tems to analyze deforestation and land degradation 
(Silva et al., 2023a, 2023b), traditional statistical tools 
like frequency ratio (FR), logistic regression (LR), 
random forest (RF), and fragmentation approach (FA) 
predominantly focus on quantifying deforestation sus-
ceptibility based on a mixture of physical and anthro-
pogenic parameters (Zerouali et al., 2023). Although 
these methods have significantly advanced our under-
standing of the causal factors behind deforestation, 
they often do not capture the complex interplay of 
socio-economic, ecological, and climatic influences. 
To address these limitations, recent efforts have 
incorporated machine learning and deep learning 
techniques to enhance the probability assessment of 
deforestation susceptibility (Altarez et al., 2023; Saha 
et  al., 2022). Building on these developments, this 
study introduces an innovative approach by employ-
ing diverse MCDM models to comprehensively 
assess the drivers of forest cover change and deforest-
ation susceptibility in Northeast India. Unlike previ-
ous methodologies, MCDM allows for the systematic 
integration and analysis of a broad range of criteria, 
making it possible to develop a more nuanced under-
standing of the multifaceted influences on defor-
estation, particularly in a region as ecologically and 
socially complex as Northeast India.

The choice and comparative analysis of MCDM 
models are critical for optimizing decision outcomes 
in scenarios characterized by complex, often con-
flicting criteria. The selection of the most appropri-
ate MCDM model hinges on factors including the 
nature of the decision problem, the diversity of cri-
teria involved, and the data’s availability and robust-
ness. As noted by Hosseini et  al. (2024), different 
MCDM models present distinct advantages regarding 
simplicity, accuracy, and their capacity to integrate 
both qualitative and quantitative data effectively. By 
systematically comparing these models, this study 
aims to identify the most suitable approach that not 
only enhances the robustness of the decision-mak-
ing process but also aligns closely with the specific 
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conservation objectives and stakeholder needs in 
Northeast India. This methodological rigor ensures 
that our analysis remains sensitive to the regional 
complexities and the multifaceted nature of defor-
estation drivers, thereby contributing to more targeted 
and effective forest conservation strategies.

Currently, the integration of geospatial tech-
niques with MCDM models represents a power-
ful tool for accurately identifying areas at risk 
of deforestation. This approach has been suc-
cessfully applied in various studies, demon-
strating its efficacy in pinpointing vulnerable 
regions (Bhutia et  al., 2024; Saha et  al., 2020, 
2021; Sahana et  al., 2018). MCDM models are 
particularly valuable in forest conservation con-
texts, where decisions must balance multiple, 
often competing criteria—such as ecological 
efficiency, economic cost, and sustainability. By 
facilitating a comprehensive analysis that consid-
ers these diverse factors, MCDM models enhance 
the decision-making process, enabling policy-
makers and conservationists to devise strategies 
that are not only effective but also equitable and 
sustainable. This study leverages these models to 
offer a nuanced assessment of deforestation risks 
in Northeast India, aiming to provide actionable 
insights that support both local and broader-scale 
forest conservation initiatives.

In 2015, global deforestation resulted in the 
loss of approximately 10 million hectares of for-
est, a devastating trend that continues to affect 
many countries, including India (Food and Agri-
culture Organization, 2024). In India, the pressures 
of agricultural expansion, rapid urbanization, and 
illegal logging exacerbate deforestation, leading to 
significant biodiversity loss and altering local and 
regional climates. Each year, about 1.5 million hec-
tares of Indian forests are transformed into barren 
landscapes, representing approximately 1% of the 
nation’s forested land (Sudhakar Reddy et al., 2016). 
Agriculture remains the dominant cause of world-
wide deforestation, responsible for 80% of all defor-
estation, with construction and urban development 
accounting for 15% and 5%, respectively (Kayet 
et  al., 2021). A particularly impactful agricultural 
practice in India is Jhum cultivation, or ’shifting 
cultivation’, which is prevalent in the mountain-
ous and forest-rich regions of Southeast Asia (Giri 
et al., 2020). This practice involves cyclical clearing 

of forests by cutting and burning vegetation to cre-
ate temporarily fertile arable land, only to abandon 
it as soil fertility declines before repeating the pro-
cess in new areas. Jhum cultivation encompasses 
about 86% of India’s total cultivated area (Pandey 
et al., 2022) and presents considerable environmen-
tal challenges exacerbated by demographic pres-
sures and the escalating demand for food (Paul et al., 
2020). This backdrop of ongoing deforestation and 
its drivers underscores the urgency and necessity of 
implementing innovative, effective strategies such as 
those explored in our study using Geographic Infor-
mation Systems (GIS) and MCDM methodologies.

According to the Forest Survey of India (2021), 
the first decade of the millennium witnessed severe 
degradation of tropical deciduous and evergreen for-
ests in developing countries, especially in Southeast 
Asia, where logging and agriculture were the primary 
culprits. The dynamics of deforestation are complex, 
varying significantly across different regions and 
changing over time due to a blend of climatic, envi-
ronmental, and anthropogenic factors. Influential 
climatic and environmental factors include rainfall 
patterns, temperature fluctuations, air pollution lev-
els, drought occurrences, forest density, floods, and 
forest fires, while key physical factors encompass 
soil quality, geology, geomorphology, and proxim-
ity to water bodies. Anthropogenic influences such 
as population density, settlement expansion, and road 
infrastructure development also play critical roles 
(Da Silva et al., 2023a, 2023b). Among these, Jhum 
cultivation remains a predominant practice that con-
tinues to erode the region’s dense forest cover, pos-
ing a substantial threat to its ecological health (Rawat 
et  al., 2018). Given these multifaceted drivers and 
their regional specificities, there is a pressing need 
for employing advanced decision-making tools like 
MCDM models, integrated with GIS, to conduct a 
nuanced analysis that can inform more targeted and 
effective forest conservation strategies. This study 
leverages these sophisticated methodologies to dis-
sect and understand the intricate patterns of defor-
estation susceptibility in Northeast India, aiming to 
contribute robust insights into forest management and 
conservation efforts.

While previous studies have shed light on vari-
ous aspects of deforestation in Northeast India, they 
often lack comprehensive long-term analysis and 
rarely apply advanced technological approaches. 
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For instance, Babu (2014) provides valuable his-
torical insights into deforestation during the colo-
nial period in Nagaland. Nag (2022) examines how 
changes in rainfall patterns in Cherrapunji, linked 
to climate change, deforestation, and industrial 
activities, pose environmental and socio-economic 
challenges. Furthermore, Rawat et al. (2018) inves-
tigate the profound ecological impacts of popula-
tion growth, Jhum cultivation, and urbanization 
on forest degradation in the region. Despite these 
valuable contributions, there remains a significant 
research gap in conducting detailed long-term anal-
yses and effectively pinpointing areas susceptible to 
deforestation using state-of-the-art tools. This study 
aims to bridge this gap by employing GIS inte-
grated with MCDM models to conduct an in-depth 
analysis of deforestation trends and dynamics in the 
relatively underexplored region of Northeast India. 
By leveraging these advanced technologies, this 
research provides a novel perspective and robust 
methodological framework that can greatly assist 
policymakers and conservation efforts in formu-
lating strategies that are not only informed by his-
torical data but are also predictive and preventative. 
This approach ensures a more sustainable manage-
ment of forest resources and helps mitigate the risk 
of future deforestation effectively.

Understanding the complexities of deforestation 
requires a comprehensive analysis that encompasses 
both natural and human elements of ecosystems (Bax 
& Francesconi, 2018; Saha et al., 2020). In response, 
the objectives of this research are twofold: (1) to 
evaluate deforestation susceptibility maps in North-
east India by utilizing advanced GIS integrated with 
MCDM methodologies, and (2) to analyze changes in 
forest cover over the past two decades (2000 − 2020). 
Unlike previous methodologies that often rely on 
singular data sources or simpler analytical frame-
works, our integrated use of GIS and MCDM models 
allows for a more holistic evaluation of deforestation 
dynamics. By combining diverse data sets and lev-
eraging MCDM for decision analysis, this approach 
not only identifies but also quantifies the relative 
importance of various deforestation drivers, provid-
ing a clearer understanding of how multiple factors 
interact in complex environments. This methodologi-
cal advancement enables more effective and targeted 
conservation strategies. Moreover, the inclusion of 

stakeholder input through participatory approaches 
ensures that the solutions developed are practical 
and grounded in local realities, further enhancing 
the applicability and sustainability of conservation 
efforts. This study introduces several novel aspects to 
the field of forest conservation:

1. Integration of MCDM: Although widely used 
across various disciplines, the application of 
MCDM in forest conservation, particularly in the 
context of Northeast India, is pioneering. This 
approach enables the unique amalgamation of 
ecological, socio-economic, and climatic data to 
assess deforestation susceptibility comprehen-
sively.

2. Localized Study with Broad Implications: By 
focusing on Northeast India, a region of rich 
biodiversity and significant environmental chal-
lenges, this study contributes unique insights into 
the global understanding of deforestation dynam-
ics, offering strategies that are applicable both 
locally and globally.

3. Comprehensive Data Analysis: Employing an 
array of data sources, including remote sensing, 
ground surveys, and government reports, inte-
grated through MCDM, enhances the precision 
and applicability of our findings, providing a 
nuanced understanding of the drivers of defor-
estation.

4. Development of a Deforestation Susceptibility 
Index: This study also pioneers the development 
of a deforestation susceptibility index, tailored 
to the specific environmental and socio-eco-
nomic characteristics of Northeast India, aimed 
at assisting policymakers and conservationists 
in prioritizing and strategizing interventions 
effectively.

5. Stakeholder Engagement: The incorporation 
of a participatory approach, involving local 
stakeholders in the criteria weighting process, 
ensures that the outcomes are deeply reflective 
of local realities and conservation priorities. 
Identifying areas susceptible to deforestation 
and analyzing historical trends are critical for 
informing effective forest management assess-
ments and shaping policies that mitigate defor-
estation impacts while promoting sustainable 
land use practices.
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Materials and methods

Description of the study area

The study area, encompassing the Seven Sister States of 
Northeast India (Arunachal Pradesh, Assam, Manipur, 
Meghalaya, Mizoram, Nagaland, and Tripura), spans 
longitudinally from 89°41′57″ E to 97°26′16″ E and 
latitudinally from 21°56′15″ N to 29°29′46″ N, covering 
approximately 2,55,088  km2 or 7.8% of India’s total area 
(Fig. 1). This region is strategically positioned, bordered 
by the Tibetan Autonomous Region of China to the north 
(1,395  km), Myanmar to the east (1,640  km), Bangla-
desh to the southwest (1,596 km), and the West Bengal 
state of India to the west (127.0 km), with Bhutan to the 
northwest (455 km). The predominant river in this area 
is the Brahmaputra, which varies in elevation from 2 to 
6,698 m above sea level. This region is divided into four 
geographically distinct zones: the Eastern Himalayas, the 
Patkai Range, the Brahmaputra Valley, and the Barak 
Valley (Paul et al., 2020).

According to the Forest Survey of India (2021), 
64.66% of the Seven Sisters region is forested, making it 
one of the twelve biodiversity hotspots in the world. The 

region’s climate is predominantly humid sub-tropical, 
with hot, humid summers and mild winters. Notably, 
the region encompasses diverse climatic zones, includ-
ing areas experiencing severe monsoons, such as Cher-
rapunji in Meghalaya—the wettest place in the world 
(Murata et  al., 2007), and regions with snow-capped 
mountains in Arunachal Pradesh (Rehman & Azhoni, 
2023). Annual rainfall in the region ranges between 
700 mm and 3,500 mm, while the mean daily tempera-
ture varies from 2 °C to 25 °C (Vese et al., 2023).

In 2011, the seven states had a total population of 
approximately 44,876,207, which represents 3.71% 
of India’s total population (Census of India, 2011). 
The region is home to various tribal groups, including 
Boro, Karbi, and Rajbanshi in Assam; the Wanchu 
and Galong in Arunachal Pradesh; the Garo, Khasis, 
and Karbis in Meghalaya; the Hmar, Paite, Mara, and 
Pang in Mizoram; the Ao, Sumi, Chang, and Konyak 
in Nagaland; and the Chakma, Usai, and Reang in 
Tripura (Ali & Das, 2003; Bajaj, 2011). The forested 
area in this region has been significantly impacted by 
the expansion of agriculture. Mandal (2011) revealed 
that between 1987 and 1997, approximately 1,312 
 km2 of forest land was destroyed in Northeast India 

Fig. 1  Geographical location map of the study area in India
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due to Jhum or shifting cultivation, a prevalent form 
of agriculture that involves burning forest land.

Methodology and database

This study employs a combination of geospa-
tial techniques and MCDM models to investigate 

changes in forest cover and assess areas at risk of 
deforestation. A comparative analysis of deforesta-
tion susceptibility zones is carried out to identify 
variations in vulnerability across the region. The 
methodological framework guiding this analysis is 
depicted in Fig. 2.

Fig. 2  Methodological framework of the study
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Annual forest cover change

Forest cover change dynamics were obtained from 
the Hansen Global Forest Change (HGFC) data 
v1.9 product (Hansen et al., 2013), using the Google 
Earth Engine (GEE) platform. Initially, the data were 
extracted through the Google Earth Engine platform, 
which provides extensive access to geospatial data-
sets, including the HGFC data. This dataset offers 
global coverage of forest change dynamics, which 
is crucial for the scope of this research. The pro-
cessing of this data involved several key steps: (1) 
Data Extraction: Specific parameters such as forest 
cover loss, gain, and overall cover were selected and 
extracted for the study period and region. (2) Data 
Cleaning and Validation: The data were cleaned to 
remove any inconsistencies or errors. Validation was 
performed by cross-referencing with high-resolution 
satellite imagery and existing forest inventory data 
to ensure accuracy. (3) Spatial Analysis: This step 
involved using GIS to overlay forest change data with 
other environmental and anthropogenic datasets to 
analyze spatial patterns of forest dynamics.

The reliability of deforestation data provided by 
the HGFC is widely recognized for its accuracy and 
comprehensiveness. HGFC utilizes Landsat satel-
lite imagery to monitor global forest cover changes, 
offering detailed analyses of deforestation. This prod-
uct combines multitemporal imagery with advanced 
data processing techniques, contributing to its robust-
ness. Validation studies, comparisons with field data, 
and the application of change detection models cor-
roborate the quality and reliability of the generated 
information (Galiatsatos et  al., 2020; Wagner et  al., 
2022). By implementing these rigorous methodolo-
gies, the study aims to provide a reliable and accurate 
assessment of forest changes, minimizing the impact 
of external factors and errors inherent in the use of 
satellite-derived datasets like HGFC. These strategies 
enhance confidence in the findings and ensure that 
policy recommendations based on this analysis are 
built on solid and verifiable data.

In the HGFC, canopy closure is defined as tree 
cover above 5  m. The primary dataset is divided 
into 10° × 10° tiles, each containing seven files, with 
a resolution of about 30  m per pixel (Mishra et  al., 
2022). Two bands from this database were used in 
the present study: (a) tree cover 2000 (band name: 

treecover2000) — indicating the proportion of forest 
cover in the year 2000, ranging from 0 to 100 percent; 
(b) tree cover loss year (band name: lossyear) — rep-
resenting annual forest cover loss or a change from 
forest lands to non-forest lands per year. In the latter 
band, ’0’ denotes ’no forest loss,’ while values 1 to 
21 represent the loss of forest corresponding to each 
year.

The HGFC data was first imported into the GEE 
platform, aligning with the boundaries of the study 
area. The forest cover (FC) area of each cell was 
then calculated relative to the grid-cell percentage 
(ranging from 0 to 100) of the treecover2000 band. 
Twenty-one different forest loss raster images for 
each year from 2001 to 2021 were extracted from the 
’lossyear’ band to analyze annual FC loss. In the FC 
loss raster dataset, values of 0 and 1 signify no loss 
and loss in that year, respectively. A script to extract 
these datasets through the GEE was adapted based on 
the methodology proposed by Santos et  al. (2020). 
After all the raster images were collected, the annual 
forest loss area and the percentage of the study area 
were calculated using ArcGIS 10.4.

Deforestation susceptibility: Factors and parameters

The analysis of deforestation susceptibility involves 
various sensitive parameters, each leaving distinct 
footprints in geospatial mapping. Selecting appro-
priate independent variables or explanatory factors 
represents a critical challenge, as existing literature 
offers no definitive guidelines for parameter iden-
tification (Saha et  al., 2021). Techniques such as 
Multiple regression models, Relief-F tests, Informa-
tion gain ratio, and probabilistic models aid in this 
selection, addressing parameter significance and 
reducing uncertainty. In this study, the multicollin-
earity diagnostic test method was chosen to ensure 
the robustness of the analysis by eliminating inter-
dependent variables, thus enhancing model validity 
(Guria et al., 2024a; Mishra et al., 2024a).

Initially, raster thematic layers for four categories 
of factors and 20 deforestation susceptibility con-
ditioning parameters were prepared within a GIS 
environment (Table  1). These parameters were then 
utilized to comprehensively analyze the drivers of 
deforestation, providing a nuanced understanding 
of the complex interactions influencing forest loss, 
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Table 1  Details of all parameters, methods, and data sources for identification of the deforestation susceptibility zones

Factors Effective factors Methods used Data used Data sources

Climatic Rainfall Inverse Distance Weighted 
(IDW)

X̂p =
N
∑

i=1

WiXi

Wi =

�

di−a∕
N
∑

i=1

di−a

�

Daily gridded rainfall data 
(0.25° × 0.25°)

India Meteorological 
Department

(http:// imdpu ne. gov. in)

Temperature Inverse Distance Weighted 
(IDW)

Gridded daily tempera-
ture data (1.0°)

India Meteorological 
Department

(http:// imdpu ne. gov. in)
PET Inverse Distance Weighted 

(IDW)
CRU TS v. 4.07 Climatic Research Unit

(https:// cruda ta. uea. ac. uk)
Physical Slope SRTM digital elevation 

model
SRTM DEM (1 Arc-

Second)
U.S Geological Survey
(https:// www. usgs. gov)

Elevation U.S Geological Survey
(https:// www. usgs. gov)

Aspect Aspect = 57.29 × �tan2
([

dz

dy

]

− [dz∕dx]

Where,

dz∕dx = ((c + 2f + i) − (a + 2d + g))∕8

dz∕dy = ((g + 2h + i) − (a + 2b + c))∕8

Here, a to i indicates the cell

U.S Geological Survey
(https:// www. usgs. gov)

Proximity to the landslide 
area

Inverse Distance Weighted 
(IDW)

Vector points Bhukosh (Geological Survey 
of India)

(https:// bhuko sh. gsi. gov. in)
Soil texture Vector to raster conversion Vector polygon

Environmental Forest density
Fd =

n
∑

i=1

Fi

A

Fi = Forest area; A = total 
area

Landsat images (30 m) U.S Geological Sps://www. 
usgs. gov)

Distance from the forest 
edge

Euclidean distance buffer-
ing

Landsat images (30 m) U.S Geological Survey
(https:// www. usgs. gov)

Distance from river Euclidean distance buffer-
ing

SRTM DEM (1 Arc-
Second)

U.S Geological Survey
(https:// www. usgs. gov)

NDVI NDVI =
(NIR−RED)

(NIR+RED)
NIR = the near-infrared 

band;
RED = red band

Landsat images 
(30 × 30 m)

U.S Geological Survey
(https:// www. usgs. gov)

http://imdpune.gov.in
http://imdpune.gov.in
https://crudata.uea.ac.uk
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://bhukosh.gsi.gov.in
http://www.usgs.gov
http://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
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including socioeconomic factors, land use changes, 
and policy interventions. This multifaceted approach 
significantly enhances the accuracy and depth of the 
research findings. Significant considerations were 
made concerning the disparities in spatial resolution 
from various satellite imagery sources. All datasets 
were prepared at a 30-m resolution and projected 
using the UTM 45N projection system.

Methods for deforestation susceptibility mapping

Weights calculation by CRITIC model Determin-
ing weights is a critical task in any decision-making 
model, and in this study, weights for all explanatory 
factors were determined using the Criteria Impor-
tance Through Inter-Criteria Correlation (CRITIC) 
method, which relies on objective weights. Proposed 
by Diakoulaki et  al. (1995), this method does not 
necessitate weights derived from expert opinions 
or decision-makers’ preferences but instead assigns 

weights based on contrast strength and conflict inten-
sity among factors (Islam et al., 2022; Qi et al., 2022).

Step 1: A decision matrix X, dimensioned n × m, is 
first generated:

where n represents alternatives and m refers to 
criteria; Xij denotes the value of the ith alternative 
of the jth criterion. A total of 253,316 alternatives 
across 20 criteria were analyzed.
Step 2: Normalization of matrix X converts factor 
values to a standard scale between 0 and 1. Before 
normalization, it is essential to identify beneficial 
(BC) and non-beneficial (CC) criteria:

(1)X =
�

Xij

�

=

⎡

⎢

⎢

⎢

⎣

X11 X12 ⋯ X1m

X21 X22 ⋯ X2m

⋮ ⋮ ⋮ ⋮

Xn1 Xn2 ⋯ Xnm

⎤

⎥

⎥

⎥

⎦

Table 1  (continued)

Factors Effective factors Methods used Data used Data sources

Anthropogenic Population density
Pd =

n
∑

i=1

Pi

A

Pi = Total Population; 
A = total area

Census population data Census of India
(https:// censu sindia. gov. in)

Distance from settlements Euclidean distance buffer-
ing

Extracted from LULC 
classes

ESRI LULC
(https:// www. esri. com)

Settlement density
Sd =

n
∑

i=1

Si

A

Si = Settlement area; 
A = total area

Extracted from LULC 
classes

ESRI LULC
(https:// www. esri. com)

Agricultural land density
Ald =

n
∑

i=1

Ali

A

Ali = Agricultural land; 
A = total area

Extracted from LULC 
classes

ESRI LULC
(https:// www. esri. com)

Distance from road Euclidean distance buffer-
ing

Open street road vector 
layer

Open Street Map
(https:// www. opens treet map. 

org)

LULC Deep learning AI land 
classification model

Sentinel-2 (10 m resolu-
tion)

ESRI LULC
(https:// www. esri. com)

Proximity to agricultural 
land

Euclidean distance buffer-
ing

Extracted from LULC 
classes

ESRI LULC
(https:// www. esri. com)

Firewood users (per 1000 
households)

Inverse Distance Weighted 
(IDW)

Census data Census of India
(https:// censu sindia. gov. in)

https://censusindia.gov.in
https://www.esri.com
https://www.esri.com
https://www.esri.com
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.esri.com
https://www.esri.com
https://censusindia.gov.in
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where x+
j
 and x−

j
 represent the maximum and mini-

mum values, respectively, for the jth criterion.
Step 3: The standard deviation of each criterion is 
calculated using Eq.  (3). This measure indicates 
the variability of the criteria:

where Xpq
∗ is the mean value of jth criterion, and m 

indicates the total number of alternatives. This step 
is crucial to understand the dispersion within each 
criterion.
Step 4: A symmetric matrix of dimensions m × m 
is constructed, where each element, rjk, represents 
the linear correlation coefficient between the crite-
rion vectors xi and xk. The matrix element rjk indi-
cates the degree of linear relationship between the 
criteria; a lower value of rjk suggests greater dis-
cordance between the criteria j and k, influencing 
their respective weights.
Step 5: The measure of conflict created by each 
criterion with respect to the decision context 
defined by other criteria is computed using Eq. (4):

where m is the total number of alternatives, and rjk 
is the linear correlation coefficient. This equation 
quantifies the degree of independence of each cri-
terion, which is pivotal for weighting.
Step 6: Information measures for each criterion 
are calculated using Eq.  (5), which integrates the 
standard deviation and conflict measures:

where Cj denotes the quantity of information con-
veyed by each criterion, and �j is the standard devi-
ation. A higher Cj value indicates a greater con-
tribution of the criterion to the decision-making 

(2)xT
ij
=

⎧

⎪

⎨

⎪

⎩

xij−x
−
j

x+
j
−x−

j

, x+
j
if j ∈ BC,

x−
j
−xij

x−
j
−x+

j

, x+
j
if j ∈ CC,

(3)
�q =

�

�

�

�

�

∑m

p=1

�

Xpq
∗ − Xpq

∗

�2

m

(4)
m
∑

k=1

(

1 − rjk
)

(5)Cj = �j ⋅

m
∑

k=1

(

1 − rjk
)

process due to its uniqueness and information 
richness.
Step 7: Finally, the objective weights of each crite-
rion are determined using Eq. (6):

where wj represents the objective weight assigned 
to each criterion. This weighting method prior-
itizes criteria with higher variability and lower 
correlations with others, aligning with the prin-
ciples of the CRITIC method (Diakoulaki et  al., 
1995; Slebi-Acevedo et al., 2020).

For precise spatial analysis in CRITIC models, the 
‘Fishnet tool’ was preferred over the ‘Create random 
points tool’ for generating spatially distributed data 
points. Values for each criterion were extracted for 
about 253,316 points using the ‘Extract Multi Values 
to Points’ tool of ArcGIS v10.4. The resulting metrics 
were processed through ‘Excel v2016’ to determine the 
final weights.

SAW model Simple Additive Weighting (SAW) 
(Hwang & Masud, 2012) is a well-known MCDM 
method. This model is computed by aggregating 
the values and weights of each criterion. In this sce-
nario, relative weight does not need to be calculated; 
instead, the weight is directly assigned by decision-
makers using either a subjective or objective method 
(Ameri et  al., 2018; Bhattacharya et  al., 2020). The 
following steps were implemented to calculate the 
SAW model in the current study (Tzeng & Huang, 
2011).

Step 1: Initially, the decision-matrix table (X) is 
created using Eq. (1).
Step 2: The subsequent step is to normalize the 
decision-matrix table (X). For this purpose, Eq. (2) 
is used.
Step 3: The weighted normalized decision matrix 
(Vij) is determined using Eq. (7):

where Vij indicates the weighted normalized deci-
sion matrix and wj refers to the weight of the jth 
criterion.

(6)wj =
Cj

∑m

k=1
Ck

(7)Vij = Rij × wj
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Step 4: The final step involves calculating the sig-
nificance degree of each alternative. In this case, 
Eq. (8) is utilized:

where Sj signifies the significance degree of the ith 
alternative.

WASPAS model The Weighted Aggregates Sum 
Product Assessment (WASPAS) was proposed by 
Zavadskas et  al. (2012). This model is one of the 
newest robust MCDM approaches, which com-
bines the weighted product model (WPM) and the 
weighted sum model (WSM) to enhance the accu-
racy of model output results. According to Wang 
et  al. (2021), the WASPAS model provides better 
results compared to the two separate models, and 
presently, this model is being utilized in various 
fields (Slebi-Acevedo et  al., 2020). The detailed 
procedure for the model’s calculation is explained 
as follows:

Step 1: Firstly, the decision-matrix table (X) is cre-
ated by applying Eq. (1).
Step 2: In this step, the beneficial and non-benefi-
cial criteria are identified, and the decision matrix 
is normalized using Eq. (2).
Step 3: According to the WSM, the total relative 
importance of the ith alternative is determined by 
Eq. (9).

 where Qi
(1) is the WSM, and wj is the weight of the 

jth criteria. In this case as well, the weight of each 
category is obtained from the CRITIC method.
Step 4: Similarly, the total relative importance 
of the ith alternative with respect to the WPM is 
determined by Eq. (10).

 where Qi
(2) is the WPM, and wj is the weight of 

the jth criteria.

(8)Sj =

m
∑

i=1

wjvij

(9)Q
(1)

i
=

n
∑

j=1

xijwj

(10)Q
(2)

i
=

n
∏

j=1

(

xij
)wj

Step 5: To increase the accuracy and effectiveness 
of the decision-making approach, two separate 
models, WSM and WPM, have been combined. 
The integrated WASPAS model is determined by 
applying Eq. (11).

In this study, experimentation with varying 
lambda (λ) values was conducted, testing the 
range from 0.1 to 0.9 in increments of 0.1. This 
was done to analyze the stability and sensitivity of 
the alternative rankings produced by the WASPAS 
model. A value of 0.5 was chosen to minimize 
unintended errors, as recommended by Zavadskas 
et al. (2012). Based on these results, a λ value that 
balances the features of both the sum and prod-
uct models was selected for the final analysis to 
ensure a fair evaluation of all alternatives. This 
balanced approach was deemed most appropriate 
for addressing the complexity and multidimen-
sional nature of the decision-making scenario in 
this study.

VIKOR model The VlseKriterijumska optimi‑
zacija I Kompromisno Resenje (VIKOR) model is 
a significant method that concentrates on select-
ing and ranking a set of options with contradictory 
criteria (Opricovic, 1998). This model constructs a 
multicriteria ranking index by quantifying the closest 
solution to the ideal (Bera et al., 2020). This is done 
through several steps:

Step 1: Initially, the decision-matrix table (X) is 
created by applying Eq. (1).
Step 2: Calculation of the ideal best value (fi

*) and 
ideal worst value (fi

−) for both beneficial and non-
beneficial criteria. If the jth criterion is beneficial, 
then the ideal best value should be the maximum, 
and the ideal worst should be the minimum, and 
vice versa.

(11)

Qi = �Q
(1)

i
+ (1 − �)Q

(2)

i
= �

n
∑

j=1

xijwj + (1 − �)
n
∏

j=1

�

xij
�wj

(� = 0, 0.1,… , 1).

(12)

f+
i

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

maxfij for benefit criterion

i

minfij for cost criterion

i

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, j = 1,…m;i = 1,… n,
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Step 3: Calculate the utility measure index (Sj) 
using Eq. (14).

 where n is the number of criteria, wi is the weight 
of the jth criterion, fi

* is the ideal best value, fi
− is 

the ideal worst value, and fij is the value of the jth 
criterion of the ith alternatives.
In the application of the VIKOR model within this 
study, specific methodologies were employed to 
ascertain the optimal benefit values (fi

*) and the 
least favorable cost values (fi

−). These values are 
critical for evaluating the compromise solution that 
provides maximum group utility for the majority 
and minimum individual regret for the opponent. 
The normalization technique was used to deter-
mine fi

* and fi
−. While this involves normalization 

in the sense of scaling values to a common range 
relative to the best and worst possible values, its 
primary purpose is to compute a utility measure 
for each alternative, rather than to standardize data. 
This technique helps mitigate the impact of differ-
ing measurement scales and distributions across 
the various criteria, ensuring that the VIKOR 
methodology provides a fair and balanced assess-
ment of all alternatives based on their perfor-
mance. The choice of normalization technique can 
significantly influence the results of the VIKOR 
analysis. Therefore, the selection is based on the 
specific characteristics of the data, including the 
scale of measurement, the presence of outliers, and 
the desired sensitivity to changes in input values. 
Each technique has its advantages in handling spe-
cific types of data, and in this study, considerations 
were made to choose the most appropriate method 
that aligns with the overall goal of achieving a 
robust and equitable multicriteria decision-making 
process.
Step 4: Calculate the regret measure index (Rj) by 
applying Eq. (15).

(13)

f−
i

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minfij for benefit criterion

i for cost criterion

max
ij

i

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, j = 1,…m;i = 1,… n.

(14)Sj =

n
∑

i=1

wi

(

f ∗
i
− fij

)

∕
(

f ∗
i
− f −

i

)

Step 5: Determine the value of S* and R* using 
Eq. (16).

where S* and R* refer to the minimum values of Sj 
and Rj, respectively; S− and R− refer to the maxi-
mum values of Sj and Rj, respectively.
Step 6: Compute the Qj value for the Performance 
Score by applying Eq. (17).

where v represents the weight of maximum group 
utility strategies; (1 – v) is the weight of the indi-
vidual regret.
When applying the VIKOR model, the calcula-

tion of the regret index (or regret measure index) can 
face challenges due to large fluctuations between cri-
teria, especially when the criteria have varying units 
or scales of measurement. Such fluctuations can dis-
proportionately influence the regret measure, poten-
tially leading to skewed or biased decision outcomes. 
In this study, there were no issues with fluctuations 
because we addressed this by performing the normal-
ization process Sj using Eq. (14).

EDAS model The Evaluation Based on Distance 
from Average Solution (EDAS) (Ghorabaee et  al., 
2015a) is a well-regarded MCDM method widely 
used to evaluate based on Positive Distance from an 
Average (PDA) and Negative Distance from an Aver-
age (NDA) as per beneficial and non-beneficial crite-
ria. The steps of the EDAS method are as follows.

Step 1: The first step focuses on creating the deci-
sion-making matrix (X) by applying Eq. (1).
Step 2: Compute the average solution (AVj).

Step 3: Determine the PDAij.
Equation (19) is applied for beneficial criteria.

(15)Rj = max
i

[

wi

(

f ∗
i
− fij

)

∕
(

f ∗
i
− f −

i

)]

(16)
S∗ = min

j
Sj, S

− = max
j
Sj [j = 1, 2,… .m]

R∗ = min
j
Rj,R

− = max
j
Rj [j = 1, 2,… .m]

(17)
Qj = v

(

Sj − S∗
)

∕(S− − S∗)

+(1 − v)
(

Rj − R∗
)

∕(R− − R∗)

(18)AVj =

∑n

i=1
Xij

n



Environ Monit Assess (2024) 196:1098 Page 13 of 33 1098

Vol.: (0123456789)

Equation (20) is applied for non-beneficial criteria

Step 4: Determine the negative distance from the 
average (NDAij).
Equation (21) is applied for beneficial criteria.

Equation (22) is applied for non-beneficial criteria.

Step 5: Calculate the weighted sum of PDAij 
among all alternatives.

 where Spi refers to the weighted sum of PDAij, and 
wj represents the weight of the jth criterion.
Step 6: Calculate the weighted sum of NDAij 
among all alternatives.

 where Sni refers to the weighted sum of NDAij.
Step 7: Determine the normalization of the values 
of SPi and SNi for all alternatives.

 where NSPi and NSNi represent the normalized 
values of SPi and SNi, respectively.
Step 8: Determine the appraisal score (ASi) for all 
alternatives.

(19)PDAij =
max

(

0,
(

Xij − AVj

))

AVj

,

(20)PDAij =
max

(

0,
(

AVj − Xij

))

AVj

(21)NDAij =
max

(

0,
(

AVj − Xij

))

AVj

(22)NDAij =
max

(

0,
(

Xij − AVj

)))

AVj

(23)SPi =

m
∑

j=1

wjPDAij

(24)SNi =

m
∑

j=1

wjNDAij

(25)
NSPi =

SPi

max
i
(SPi)

NSNi = 1 −
SNi

max
i
(SNi)

(26)ASi =
1

2

(

NSPi + NSNi

)

Step 9: Finally, the alternatives need to be ranked 
according to the decreasing order of the appraisal 
score (ASi). The best choice among the alternatives 
will have the maximum value of ASi (Ghorabaee 
et al., 2015b).

The concern regarding potential deviations 
caused by the computation of PDA and NDA 
when utilizing the EDAS model is important to 
address. The EDAS methodology inherently miti-
gates these issues through its structured steps. 
By normalizing the distances and computing the 
weighted sums of PDA and NDA (Eq.  25), the 
model reduces the risk of any single criterion dis-
proportionately influencing the overall evaluation. 
Moreover, the calculation of the final appraisal 
score (ASi), which combines these normalized val-
ues, ensures that the rankings of alternatives are 
robust and unbiased. Therefore, although devia-
tions might occur due to varying units or scales 
of criteria, the EDAS model’s design effectively 
balances these differences to provide reliable and 
consistent evaluation outcomes.

Estimation of deforestation susceptibility

Deforestation susceptibility estimation was per-
formed using 253,316 samples (X,Y) where defor-
estation instances were recorded in the HGFC prod-
uct data. Subsequently, the samples were used as 
input data in the four MCDM models  (Qj − VIKOR, 
 ASi − EDAS, Q1 − SAW, and Q2 − WASPAS). 
Then, the sample points were used to generate a 
raster map of deforestation susceptibility zones for 
each MCDM using the Inverse Distance Weighting 
(IDW) interpolation technique.

The final deforestation susceptibility maps using 
the VIKOR, SAW, EDAS, and WASPAS models 
were categorized into five distinct classes: "very 
low," "low," "medium," "high," and "very high." In 
this study, the categorization of deforestation was 
developed using equal intervals, which allowed for 
the reduction of differences within each class and 
the maximization of differences between classes 
(Saha et al., 2022).

The choice to employ the IDW method for 
interpolating points in creating a deforestation 
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vulnerability map was based on several con-
siderations that align with the specific needs 
and constraints of this study. The decision was 
informed by comparing IDW with other common 
interpolation methods such as Spline, Kriging, 
and Natural Neighbor, evaluating criteria includ-
ing simplicity, data requirements, computational 
efficiency, and suitability to the data character-
istics. The justification for using IDW are (a) 
simplicity and interpretability, (b) data suitabil-
ity, (c) computational efficiency, and (d) control 
over influence.

The comparison with methods such as Spline 
reveals that their results are unrealistic in areas 
where deforestation is highly non-uniform and 
are sensitive to outliers, which can distort the vul-
nerability map where deforestation patterns are 
irregular. Kriging, while useful, requires a well-
defined model of spatial correlation and extensive 
data preprocessing to determine the semivario-
gram, which was not optimal given the variability 
and uncertainty in deforestation data. The Natural 
Neighbor method can be less effective than IDW 
when the data points are unevenly distributed 
across the study area, a common issue in defor-
estation data. Thus, the IDW method was selected 
as it provides a balance between accuracy, ease of 
use, and computational demands, making it highly 
suitable for creating a deforestation vulnerability 
map with the available data. This method allows 
for effective representation of local variations in 
deforestation risk without the need for complex 
model specifications or assumptions inherent 
in other interpolation techniques. In this study, 
multivariate analysis was not performed because 
it was not the objective to analyze correlations 
among independent variables.

Models validation and comparisons

Validating prediction results is a crucial task, as 
researchers and policymakers derive significant inter-
pretations from these results. The calibration process 
involved applying the Receiver Operating Charac-
teristic (ROC), Area Under the Receiver Operating 
Characteristic (AUC) curve, statistical analysis, and 
Wilcoxon signed-rank tests.

Receiver operating characteristic (ROC) and area 
under the receiver operating characteristic (AUC) 
curve

The ROC curve is a graphical representation that 
plots sensitivity (or True Positive Rate, TPR) against 
1 − Specificity (or False Positive Rate, FPR) at vari-
ous threshold settings. The x-axis represents 1 − Spec-
ificity, indicating the models’ error predictions, while 
the y-axis displays sensitivity, reflecting the models’ 
accuracy and effectiveness (Arabameri et  al., 2020; 
Bhutia et al., 2024).

To ascertain the significance of individual factors 
within MCDM models, sensitivity analysis was con-
ducted. This method allowed for the identification of 
how variations in input parameters affect model out-
puts, thereby highlighting the factors with the most 
significant impact on the results. Techniques such as 
Sensitivity, Specificity, Accuracy, AUC, and Preci-
sion were employed. Each criterion was removed one 
at a time to observe the effect on the overall decision 
score, providing insights into the relative importance 
and sensitivity of each criterion.

The AUC analysis was utilized to assess the abil-
ity of the MCDM models to effectively distinguish 
between deforested and non-deforested areas. The 
AUC values provide a quantitative measure of model 
performance in terms of sensitivity and 1 – speci-
ficity, classified as follows: 0.5–0.6 indicates poor 
discrimination; 0.6–0.7, fair; 0.7–0.8, acceptable; 
0.8–0.9, good; and 0.9–1, excellent (Rasyid et  al., 
2016).

Sensitivity analyses were rigorously performed 
to evaluate the impact of each factor on the model 
results within the context of this study. Sensitivity 
analysis is crucial for understanding how changes 
in input parameters affect model outcomes, thereby 
providing insights into the stability and robustness 
of the decision-making process. This evaluation 
was based on the analysis of 500 points identified 
as deforested and 500 points as non-deforested to 
verify the accuracy of the predictions by MCDM 
models. The evaluation metrics, including sensitiv-
ity, specificity, accuracy, and precision, are quanti-
fied through Eqs. (27) to (31).

(27)Specif icity = 1 −
TN

(TN + FP)



Environ Monit Assess (2024) 196:1098 Page 15 of 33 1098

Vol.: (0123456789)

where TP refers to true positives, representing pix-
els correctly classified as deforestation. TN denotes 
true negatives, indicating pixels correctly classified 
as non-deforestation. FP stands for false positives, 
which are pixels incorrectly classified as deforesta-
tion, and FN is false negatives, referring to pixels 
incorrectly classified as non-deforestation. Fk repre-
sents the false positive rate (1 – Specificity) at each 
threshold, and Tk denotes the sensitivity (True Posi-
tive rate) at each threshold (Guria et al., 2024b).

Regarding the consideration of climate factors, 
temperature, and precipitation were integrated into 
the MCDM models through their direct and indirect 
impacts on forest area change. These climate vari-
ables were modeled as criteria within the MCDM 
framework, with their weights determined based on 
historical significance and projected changes. The 
impact of these factors was assessed using regres-
sion analysis to correlate changes in climate vari-
ables with alterations in forest cover. This assess-
ment was supported by spatial data analysis, which 
visualized the distribution and magnitude of these 
changes across the study area. These methodologi-
cal enhancements and the comprehensive evaluation 
of climate factors provide a robust framework for 
understanding and predicting the dynamics of for-
est area change under varying climatic conditions. 
This approach contributes valuable insights into 
the fields of environmental management and policy 
formulation.

Statistical analysis

In evaluating the robustness of the deforestation sus-
ceptibility models, it is crucial to understand that 
a lower False Negative Rate (FNR, or miss rate) is 

(28)Sensitivity =
TP

(TP + FN)

(29)AUROC =

n
∑

k=1

(

Fk+1 − Fk

)

(

Tk+1 + T
k

2

)

(30)Accuracy =
TP + TN

TP + TN + FP + FN

(31)Precision =
TP

TP + FP

indicative of higher model accuracy. Conversely, for 
the remaining metrics utilized in this study—includ-
ing Cohen’s Kappa index, True Negative Rate (TNR), 
Positive Predictive Value (PPV), False Discovery 
Rate (FDR), Negative Predictive Value (NPV), False 
Omission Rate (FOR), F-score, Matthew’s Correla-
tion Coefficient (MCC), Yule’s Q, and True Skill Sta-
tistics (TSS)—higher values correspond to enhanced 
model accuracy (Arabameri et al., 2020).

Wilcoxon signed‑rank tests

Non-parametric statistical hypothesis tests, spe-
cifically the Wilcoxon signed-rank tests (Wilcoxon, 
1949), were applied to assess the significance of dif-
ferences among the performances of the four types 
of MCDM models utilized in this study. These tests 
help in determining the acceptability of each model 
based on their ability to predict deforestation sus-
ceptibility accurately. The null hypothesis for this 
analysis posits that there is no significant difference 
in the performance (in terms of prediction accuracy) 
among the four MCDM models. Statistical signifi-
cance is evaluated using the p-value and Z-value; 
if the p-value is less than 0.05 and the Z-value 
exceeds ± 1.96, the null hypothesis is rejected. Such 
an outcome would indicate a significant difference in 
the performance levels of the MCDM models regard-
ing their effectiveness in creating deforestation sus-
ceptibility maps.

Results

Forest cover change analysis (2001–2021)

Table 2 presents the total forest cover in 2000, the 
total annual forest loss since 2000, the percentage, 
and mean forest loss for seven states of Northeast 
India. Our analysis found that the highest amount 
of forest cover in 2000 was observed in Arunachal 
Pradesh (64,773.57  km2), while the lowest was 
in Tripura (7,677.95  km2). The highest percent-
age of forest cover in terms of geographical area is 
observed in Mizoram (94%), followed by Nagaland 
(83%). Even though Assam ranks second in terms 
of total forest cover (32,535.32  km2), in contrast, 
the state has the lowest forest cover (41%) relative 
to its geographical area.
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The analysis indicates that a significant amount 
(10.49%) of the total forest area has been destroyed 
in the last two decades. As shown in Fig.  3, the 
entire state of Northeast India has been affected by 
forest loss. During this period, the highest amount 
of forest loss has occurred in Nagaland (23.44%), 
with more than 15% of forest cover having been lost 
in the states of Mizoram and Tripura. Arunachal 
Pradesh (4.20%) has lost the least amount of for-
est cover relative to its total geographical area. 
However, according to our analysis, the total for-
est loss in this state is 2720.87  km2. The highest 
mean change rate of 159.55km2/year was recorded 
in Assam, while the lowest mean change rate of 
59.21km2/year was found in Tripura.

This study investigated the recent (2001–2021) 
trends in forest loss in seven states. Figure  3(i) 
reveals a trend of annual forest loss for all seven 
states. Here, a positive upward trend  (R2 = 0.6984) 
is visible. Furthermore, analysis indicates a marked 
escalation in deforestation rates beginning in 2014, 
highlighting an increasing trend in forest cover 
loss. The most consistent loss of forest land has 
been observed in Manipur  (R2 = 0.7591) as seen in 
Fig. 3(f). In the other states, the rate of forest loss 
has been observed to increase over the years with 
a decrease in some years. For example, Assam lost 
the most forest area (308.86  km2) in 2016, but this 
figure dropped to 134.60  km2 in 2019 as shown in 
Fig. 3(b). Despite this, Table 2 and Fig. 3(g) show 

Table 2  Forest cover loss between 2001 and 2021 in Northeast India

States Assam Nagaland Mizoram Arunachal Pradesh Manipur Meghalaya Tripura Total

Tree cover 2000  (km2) 32,535.32 13,678.29 19,751.04 64,773.57 17,815.25 18,145.70 7677.95 174,377.12
Total area  (km2) 78,438 16,579 21,081 83,743 22,327 22,429 10,491 2,55,088
Forest cover by area (%) 41 83 94 77 80 81 73 68
Loss per year  (km2) 2001 70.23 127.34 50.78 89.18 45.29 46.62 30.82 460.25

2002 84.15 81.15 45.80 71.77 43.35 36.98 19.09 382.29
2003 60.64 79.91 41.61 70.84 53.86 24.24 13.18 344.28
2004 134.31 102.47 51.73 132.73 54.19 58.55 29.44 563.42
2005 86.10 91.85 50.05 91.23 49.90 43.68 15.08 427.90
2006 95.26 71.78 38.52 100.96 54.74 53.54 62.10 476.90
2007 126.14 50.99 16.93 99.67 43.80 67.38 58.63 463.55
2008 165.20 67.66 38.72 113.03 59.82 74.04 53.03 571.52
2009 163.09 75.18 43.73 92.81 63.04 52.64 50.73 541.22
2010 110.03 49.79 29.71 61.26 44.09 67.49 33.96 396.32
2011 151.97 74.86 34.62 132.15 65.06 57.90 25.72 542.28
2012 179.47 146.13 75.20 157.59 93.67 62.49 21.49 736.02
2013 105.97 172.92 121.78 112.90 145.64 96.36 31.52 787.09
2014 286.60 260.27 207.92 161.84 193.16 218.48 62.72 1390.99
2015 254.16 261.51 153.21 153.72 184.67 194.13 48.84 1250.25
2016 308.86 292.70 390.75 234.77 255.36 245.22 61.87 1789.54
2017 209.40 335.31 473.76 235.27 235.46 266.57 169.34 1925.10
2018 178.12 250.54 296.55 144.04 181.47 173.11 84.81 1308.64
2019 134.60 178.41 274.94 124.61 172.45 151.51 118.78 1155.29
2020 221.49 242.91 294.80 162.25 196.18 157.90 127.21 1402.74
2021 224.80 192.68 317.65 178.24 206.35 130.94 125.05 1375.71

Total loss  (km2) 3350.59 3206.35 3048.76 2720.87 2441.55 2279.79 1243.41 18,291.31
Total loss (%) 18.32 17.53 16.67 14.88 13.35 12.46 6.80 100
Loss since 2000 (%) 10.30 23.44 15.44 4.20 13.70 12.56 16.19 10.49
Mean loss  (km2) 159.55 152.68 145.18 129.57 116.26 108.56 59.21 871.01



Environ Monit Assess (2024) 196:1098 Page 17 of 33 1098

Vol.: (0123456789)

that Mizoram (473.76  km2) recorded the highest 
loss of forest cover in a single year (2017) among 
all states. The gradual trend of deforestation is 
least observed in Arunachal Pradesh  (R2 = 0.5036), 
as shown in Fig. 3(c). Deforestation has also been 
observed in Tripura  (R2 = 0.567), but it is limited, 
as depicted in Fig. 3(h). The spatiotemporal change 
of forest cover in the Northeastern states of India is 
shown in Fig. 4.

Deforestation susceptibility assessment

Multicollinearity analysis of selected independent 
variables

In the context of the multivariate analysis conducted 
within this study, a thorough examination of potential 
correlations among independent variables was under-
taken. Multicollinearity diagnostics were applied to 

Fig. 3  Forest cover dynamics: (a) total forest loss since 2000, 
and state-wise trends in forest cover during the last two dec-
ades for (b) Assam, (c) Arunachal Pradesh, (d) Nagaland, (e) 

Meghalaya, (f) Manipur, (g) Mizoram, (h) Tripura, and (i) total 
forest losses from 2001 to 2021
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Fig. 4  Spatiotemporal changes in forest cover loss from 2001 
to 2021 are depicted. The annual distribution of forest loss is 
highlighted in red. Circles overlaid on the map represent the 

cumulative forest cover loss for each year, illustrating the pro-
gression and concentration of deforestation over the two-dec-
ade period
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assess potential collinearity among 20 parameters, 
ensuring the reliability of statistical estimates for 
each independent variable. The multicollinearity test 
results, presented in Table  3, indicated that with all 
variance inflation factor (VIF) values being less than 
10 and all tolerance values greater than 0.1, there are 
no significant collinearity issues among the selected 
explanatory parameters. This outcome supports the 
reliability of the variables’ statistical estimates in the 
deforestation susceptibility model, although it does 
not directly measure the model’s overall uncertainty.

Evaluation matrix

In the current study, the generation of the final defor-
estation susceptibility maps using the VIKOR, SAW, 
EDAS, and WASPAS methods was based on 20 
explanatory factors. Given that these MCDM tech-
niques do not operate on a per-pixel basis, we used 
the ’Create Fishnet’ tool in ArcGIS v10.4 to gener-
ate 253,316 sample points to prepare the evalua-
tion matrix for these four models. Subsequently, we 
extracted the values of these points from each the-
matic layer. The evaluation matrix table comprises 
253,316 rows (representing sample points) and 20 
columns (representing factors). Assigning weights to 
the deforestation explanatory criteria is a crucial task 
in this process. Therefore, we utilized the objective-
based CRITIC statistical method to calculate the 
weights for each parameter. Of the total 20 explana-
tory factors, 10 were classified as beneficial criteria 
(BC), while the remaining 10 factors were categorized 

as non-beneficial (NB) or cost criteria (CC), as shown 
in Table 4. In this study, the highest weights were cal-
culated for aspect and forest density (10%), followed 
by soil (9%), slope (7%), LULC, agricultural density, 
NDVI (6%), proximity to landslide area, rainfall, and 
PET (5%), temperature, elevation and proximity to 
agricultural land (4%), settlement density, population 
density, distance to road, and distance to river (3%), 
and distance to settlements, distance to forest edge, 
and fire-wood user (2%). All the statistics derived 
from the SAW, WASPAS, VIKOR, and EDAS mod-
els are shown in Table 5.

Generation of deforestation susceptibility maps

The final deforestation susceptibility maps using 
VIKOR, SAW, EDAS, and WASPAS techniques are 
shown in Fig. 5. and Table 6. It segments the raster 
data naturally, reducing the differences within each 
class and maximizing the differences between classes 
(Saha et al., 2022). It should be noted that for SAW, 
WASPAS, and EDAS, a higher model output value 
indicates a very high deforestation susceptibility 
zone, while a lower value suggests a very low sus-
ceptibility zone. In contrast, for the VIKOR model, 
an inverse relationship is observed, where a lower 
value represents a high deforestation susceptibility 
zone, and a higher value represents a low susceptibil-
ity zone. A composite graph (Fig. 6) shows the area 
distribution by deforestation susceptibility category, 
as derived from different models for the seven states 
of Northeast India.

Table 3  Multicollinearity 
analysis results

Parameters Collinearity statistics Parameters Collinearity sta-
tistics

Tolerance VIF Tolerance VIF

Elevation 0.11 8.83 Rainfall 0.42 2.36
Temperature 0.12 8.13 Dist. from road 0.43 2.35
PET 0.13 7.87 Firewood user 0.45 2.22
Agricultural density 0.25 3.94 Slope 0.49 2.06
Forest density 0.26 3.85 Landslide place 0.53 1.88
LULC 0.28 3.53 Settlement density 0.61 1.64
NDVI 0.30 3.37 Soil 0.74 1.36
Population density 0.31 3.19 Dist. from forest edge 0.77 1.3
Prox. to agri. lands 0.32 3.17 Dist. from river 0.94 1.06
Dist. from settlements 0.33 3.07 Aspect 0.96 1.04
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Deforestation susceptibility analysis using the 
VIKOR model The VIKOR model has been used 
to demarcate deforestation susceptibility zones in 
Northeast India. The predicted map model has been 
categorized into five classes (Fig. 5(a)) based on dif-
ferent threshold values: very low (0.78–1.00), low 
(0.58–0.78), moderate (0.40–0.58), high (0.22–0.40), 
and very high (0–0.22). The areas classified as very 
high and high deforestation susceptibility zones were 
observed in the middle part, southwestern, and south-
eastern parts of the study area. The spatial distribu-
tion of the deforestation susceptibility zones, from 
"very high" to "very low," showed coverage areas of 
8.76%, 11.80%, 18.59%, 32.57%, and 28.28%, respec-
tively. According to the susceptibility maps, Assam, 
Tripura, and Arunachal Pradesh were very suscepti-
ble to deforestation, with the zones from "medium" to 
"very high" susceptibility observed to be most exten-
sive in these states. Conversely, Mizoram, Nagaland, 
and Manipur were less susceptible to deforestation.

Deforestation susceptibility analysis using the 
SAW model The deforestation probability using 
the SAW model was determined based on the relative 
weight assigned by the CRITIC method. The results 
of the SAW model were classified into five different 
categories: very low (0.24–0.4), low (0.41–0.45), 
moderate (0.46–0.52), high (0.53–0.6), and very high 
(0.61–0.78). Areas of very high (10.96%) and high 
(13.84%) deforestation susceptibility were identi-
fied in the central, southwestern, and southeastern 
parts, particularly in the states of Assam, Tripura, and 

Manipur as shown in Fig. 5(c). In contrast, very low 
(16.17%) and low (32.50%) deforestation susceptibil-
ity zones were observed in the northern, southern, 
western, and some clustered locations of the study 
area, particularly in Mizoram, Arunachal Pradesh, 
Meghalaya, and Nagaland.

Deforestation susceptibility analysis using the 
EDAS model The EDAS model was successfully 
applied to demarcate the deforestation susceptibil-
ity zones. The model’s outcome was classified into 
five different categories: very low (0.13–0.42), low 
(0.43–0.51), moderate (0.52–0.59), high (0.6–0.7), 
and very high (0.71–0.96) as shown in Fig. 5(b). The 
delineated deforestation susceptibility map revealed 
substantial variations in the deforestation potential of 
the study area. Approximately 15.33% of the region’s 
area was very highly susceptible to deforestation, par-
ticularly in the states of Assam, Tripura, and Manipur. 
The map further demarcated approximately 14.68% 
of the study area as semi-critical in terms of defor-
estation susceptibility. Nevertheless, about 35.16%, 
24.63%, and 10.20% of the study area were identified 
as having moderate, low, and very low deforestation 
susceptibility, respectively. The states such as Mizo-
ram, Arunachal Pradesh, and Meghalaya exhibited 
moderate to very low deforestation susceptibility.

Deforestation susceptibility analysis using the 
WASPAS model Deforestation susceptibility 
zones were assigned using the Weighted Aggre-
gated Sum Product Assessment (WASPAS), one 

Table 5  Statistics of the 
SAW, WASPAS, VIKOR, 
and EDAS models

# SAW (Q1) WASPAS VIKOR EDAS

Sj Rj Qj NSPi NSNi Asi

S1 0.41 0.20 0.59 0.10 0.84 0.18 0.73 0.46
S2 0.51 0.25 0.49 0.10 0.74 0.34 0.78 0.56
S3 0.46 0.23 0.54 0.10 0.78 0.33 0.81 0.57
S4 0.38 0.19 0.62 0.10 0.87 0.20 0.75 0.47
S5 0.51 0.26 0.49 0.10 0.74 0.28 0.80 0.54
….
S253312 0.48 0.24 0.52 0.09 0.65 0.40 0.80 0.60
S253313 0.46 0.23 0.54 0.09 0.67 0.45 0.40 0.42
S253314 0.47 0.24 0.53 0.09 0.66 0.52 0.37 0.44
S253315 0.44 0.22 0.56 0.09 0.69 0.47 0.37 0.42
S253316 0.54 0.27 0.46 0.09 0.59 0.55 0.66 0.60
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Fig. 5  Deforestation susceptibility maps using (a) VIKOR, (b) EDAS, (c) SAW, and (d) WASPAS

Table 6  Area and proportion area of deforestation susceptibility zones derived by different methods

Deforestation 
susceptibility

VIKOR SAW EDAS WASPAS

Area
(km2)

Area (%) Area
(km2)

Area (%) Area
(km2)

Area (%) Area
(km2)

Area (%)

Very low 71,671.45 28.28 40,979.16 16.17 25,857.79 10.20 137,478.11 54.25
Low 82,529.16 32.57 82,356.35 32.50 62,411.08 24.63 48,913.92 19.30
Medium 47,106.17 18.59 67,227.17 26.53 89,085.62 35.16 27,692.15 10.93
High 29,900.05 11.80 35,067.80 13.84 37,206.49 14.68 22,935.41 9.05
Very high 22,186.81 8.76 27,763.19 10.96 38,832.67 15.33 16,374.06 6.46
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of the most widely used MCDA models. The pre-
diction result of the WASPAS model was classi-
fied into five different classes: very low (0.12–
0.25), low (0.26–0.32), moderate (0.33–0.4), high 
(0.41–0.49), and very high (0.5–0.71) using the 
Janke natural breaks classifier technique. Most 
susceptibility zones fell within the very low and 
low susceptibility classes (137,478.11  km2 and 
48,913.92  km2) compared to the high potential 
class (16,374.06  km2). The spatial distribution of 
the “very high” to “very low” deforestation sus-
ceptibility zones showed areas covered by 6.46%, 
9.05%, 10.93%, 19.30%, and 54.25%, respectively. 
From this model, it was found that states like 
Assam, Tripura, and Manipur are most vulnerable 
to deforestation. In contrast, states like Mizoram, 
Arunachal Pradesh, and Nagaland are less prone to 
deforestation (Fig. 5d).

Correlation studies of the models

Correlation analyses between the models (VIKOR-SAW, 
VIKOR-EDAS, VIKOR-WASPAS, SAW-EDAS, SAW-
WASPAS, WASPAS-EDAS) were performed to identify 
the inter-relationships between them. Based on  R2 statisti-
cal measures, it was observed that a high positive correla-
tion  (R2 = 0.8483) persisted among the EDAS-SAW tech-
niques. VIKOR-SAW  (R2 = 0.7906) and SAW-WASPAS 
 (R2 = 0.7514) also exhibited a high positive correlation. 
Interestingly, VIKOR-WASPAS  (R2 = 0.7822) showed a 
high negative correlation. These results reflect the con-
sistency of the normalization and aggregation outcomes 
among these four methods, adding to the dependability 
of the models. In contrast, EDAS-WASPAS and VIKOR-
EDAS revealed a moderate and good correlation, i.e., 
 R2 = 0.6122 and  R2 = 0.5415, respectively. The graphical 
representation of these correlations is illustrated in Fig. 7.

Fig. 6  Composite graph showing the distribution of area by deforestation susceptibility category, derived from different models for 
the seven states of Northeast India (in %): (a) VIKOR, (b) SAW, (c) EDAS, and (d) WASPAS models
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Model validation

The statistical methods employed to analyze the 
acceptability of the model outputs are shown in 
Table 7. Among the methods used, VIKOR demon-
strated better performance than the other three meth-
ods (SAW, EDAS, and WASPAS). The AUC of the 
receiver operating characteristics (ROC) values for 
VIKOR, SAW, EDAS, and WASPAS were 0.938, 
0.901, 0.895, and 0.864, respectively. The Boolean 
ROC plot (Fig.  8) provided a visual validation of 
our models, indicating that the overall accuracy of 
the models ranges between 85 and 95%. This result 
signifies the good to very good predictive capability 

of these models for future prediction of deforesta-
tion susceptibility. The Cohen’s kappa index values 
for these four methods were 0.830, 0.796, 0.783, and 
0.768, respectively. This implies that the acceptabil-
ity of these models in predicting deforestation is very 
promising, with VIKOR providing the best results.

The efficiency (E) values of these methods were 
0.866, 0.824, 0.807, and 0.819, respectively. This 
finding demonstrated very good to excellent predict-
ability of these four models. Moreover, the SAW 
method achieved the highest F-score value (0.829) 
among all the methods. The VIKOR model also had 
the highest sensitivity or True Positive Rate (TPR), 
with a value of 0.878, followed by SAW (0.821), 

Fig. 7  Correlation studies of (a) SAW-EDAS, (b) SAW-VIKOR, (c) WASPAS-VIKOR, (d) WASPAS-SAW, (e) WASPAS-EDAS, (f) 
EDAS-VIKOR
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EDAS (0.819), and WASPAS (0.802). The specific-
ity or False Positive Rate (FPR) values of these mod-
els were 0.146, 0.173, 0.205, and 0.161, respectively.

In this study, sensitivity analysis was conducted 
extensively across all relevant factors, including envi-
ronmental, economic, and social criteria. The analysis 
revealed that certain environmental factors, such as 
deforestation rates and pollution levels, were particu-
larly sensitive and significantly influenced the model’s 
outcomes under different weighting schemes. This 

insight led to a more cautious approach in assigning 
weights to these sensitive criteria, ensuring that the 
model remained robust under various plausible sce-
narios. These sensitivity analyses not only confirmed 
the reliability of the model under different conditions 
but also provided critical insights into which factors 
were most influential, thereby guiding decision-makers 
in focusing their attention and resources on the most 
impactful areas. This approach enhances the credibil-
ity and transparency of the decision-making process, 

Table 7  Performance 
metrics of the four models 
(VIKOR, SAW, EDAS, 
WASPAS)

Metrics VIKOR SAW EDAS WASPAS

AUC 0.938 0.901 0.895 0.864
True positive rate (TPR) 0.878 0.821 0.819 0.802
False positive rate (FPR) 0.146 0.173 0.205 0.161
Cohen’s kappa index 0.830 0.796 0.783 0.768
Accuracy or Efficiency (E) 0.866 0.824 0.807 0.819
True negative rate (TNR) 0.854 0.827 0.795 0.839
Miss rate 0.122 0.179 0.181 0.198
Positive predictive value (PPV) 0.856 0.837 0.798 0.856
False discovery rate (FDR) 0.144 0.163 0.202 0.144
Negative predictive value (NPV) 0.876 0.810 0.816 0.780
False omission rate (ROF) 0.124 0.190 0.184 0.220
F-score 0.771 0.829 0.808 0.828
Matthew’s correlation coefficient (MCC) 0.586 0.647 0.614 0.638
Yule’s Q 0.887 0.912 0.892 0.909
True skill statistics (TSS) 0.732 0.647 0.614 0.641

Fig. 8  ROC curves for 
validating the deforestation 
susceptibility maps
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providing stakeholders with confidence in the robust-
ness and adaptability of the model. Furthermore, the 
Wilcoxon signed-rank test was performed to verify the 
statistical differences between the deforestation suscep-
tibility models. The result of this test indicated that all 
pairwise comparative models were significantly differ-
ent, with p-values < 0.05 and Z values >  ± 1.96. The 
Wilcoxon Signed Ranks Test (Z values) and the sig-
nificance levels (p-values) of the different deforestation 
susceptibility models are detailed in Table 8.

Discussion

Deforestation in india: MCDM models for prediction 
and policy

Currently, deforestation poses a significant chal-
lenge and should, therefore, be a primary concern 
for researchers, policymakers, administrators, and 
environmentalists globally. In India, climate change 
significantly contributes to deforestation, such as 
through increases in global temperatures, which cause 
water stress in forests, compromising tree growth 
and increasing the mortality of trees that are unable 
to adapt to higher temperatures (Li et al., 2016; Lodh 
& Haldar, 2024). Additionally, prolonged droughts 
and lightning events can promote the occurrence of 
wildfires (Mishra et al., 2024b) and the proliferation 
of pests and diseases that attack trees. These factors 
contribute to forest degradation, reducing biodiver-
sity and affecting the ecosystem services that forests 
provide, such as climate regulation, soil conservation, 
and water purification (Das et al., 2024).

It should also be noted that anthropogenic actions, 
such as the expansion of agricultural areas, severely 

contribute to deforestation. However, in recent dec-
ades, the Indian government has implemented vari-
ous forest protection policies. One such policy is 
the National Afforestation and Eco-Development 
Program (Pujar et al., 2022), which aims to preserve 
forest cover through reforestation and sustainable 
management, recognizing the rights of indigenous 
communities and promoting participatory conserva-
tion. Although these policies have achieved some suc-
cesses, challenges persist. These include the need for 
increased funding, effective monitoring, and mitiga-
tion of climate impacts to ensure the sustainability of 
Indian forests (Malik et al., 2014).

This study aimed to identify areas of forest loss 
and regions vulnerable to deforestation in Northeast 
India. By examining drivers of forest cover change 
and deforestation susceptibility using MCDM mod-
els, the research supports ongoing conservation 
efforts. The use of MCDM models in deforestation 
prediction has emerged as an effective tool for assess-
ing and managing environmental impacts across the 
globe. In this study, the utilized models incorporated 
various parameters and criteria, such as vegetation 
cover, land use, proximity to roads, and human set-
tlements, into an analytical framework that aids in 
identifying areas more likely to undergo deforesta-
tion. By integrating geospatial data, MCDM models 
enabled the future simulation of deforestation and 
allowed for the analysis of deforestation drivers and 
land use changes. The use of MCDM models enables 
decision-makers to formulate public policies based on 
predictive deforestation scenarios to mitigate impacts 
caused by the loss of vegetation cover (Dohale et al., 
2024). Moreover, these models provide a transpar-
ent and quantitative approach, facilitating the com-
munication and understanding of the decisions made. 
However, it is crucial to consider the quality of input 
data and the uncertainty associated with the predic-
tions made by the models. Continuous updating and 
validation of MCDM models are essential to ensure 
their effectiveness in environmental conservation and 
the sustainable management of forests.

Studying deforestation prediction in India is cru-
cial due to its rich biodiversity and the environmental 
challenges it faces. With an extensive range of tropi-
cal forests and a growing population, India encounters 
significant pressures on its natural resources (Basu & 
Basu, 2023). Understanding deforestation patterns is 
essential to mitigate habitat loss, conserve threatened 

Table 8  Wilcoxon signed-rank test comparing different 
MCDA models for deforestation susceptibility assessment

a = Wilcoxon signed ranks test; b = Based on negative ranks; 
c = Based on positive ranks

Model comparison Z  valuea p-value Significance

SAW—VIKOR  − 22.600b  < 0.05 Yes
EDAS—VIKOR  − 16.402b  < 0.05 Yes
WASPAS—VIKOR  − 4.168c  < 0.05 Yes
WASPAS—SAW  − 19.841c  < 0.05 Yes
EDAS—SAW  − 8.234c  < 0.05 Yes
WASPAS—EDAS  − 15.336c  < 0.05 Yes
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species, and protect vital ecosystem services. Further-
more, predicting deforestation can inform more sus-
tainable land use policies and practices, promoting a 
balance between economic development and environ-
mental conservation in the context of rapid urbaniza-
tion and industrialization (Saha et al., 2020). A study 
by Lele and Joshi (2009) reported that the defor-
estation rate in Northeast India from 1972 to 1999 
accounted for about 97,875  km2, altering 30% of the 
forest cover in each state within the region. Accord-
ing to Hazarika and Bhattacharjee (2023), the maxi-
mum forest loss occurred in Nagaland, which aligns 
with the findings of this study. A quantitative assess-
ment of forest loss in Northeast India from 2001 to 
2021 was conducted using HGFC data, yielding sig-
nificant findings. The analysis indicates that approxi-
mately one-tenth of the total forest area diminished 
over the last two decades in Northeast India. During 
this period, the highest forest loss in terms of forest 
coverage area occurred in Nagaland (23.44%), with 
more than 15% of forest cover lost in Mizoram and 
Tripura. According to data from the Forest Survey 
of India (2021), the highest forest loss between 2011 
and 2021 occurred in Mizoram, followed by Naga-
land. Assuming the accuracy of both this study and 
the Forest Survey of India, the discrepancy in find-
ings—Mizoram showing the highest forest loss for 
the 2011–2021 period, while Nagaland ranks highest 
for 2001–2021 in this study—could be attributed to 
the differences in the time frames analyzed.

This analysis reveals that major forest loss in 
Mizoram occurred between 2015–2018. This trend 
aligns with the analysis of the Global Forest Watch 
(2024), which observed major forest loss during the 
same period. Deforestation potential mapping can 
serve as a crucial tool for preventing future deforesta-
tion and creating a roadmap (Bhutia et al., 2024). The 
incorporation of geospatial techniques and robust sta-
tistical methods makes the model more realistic and 
scientific. Consequently, a few statistical probabilis-
tic methods and techniques have been implemented 
worldwide for spatial prediction of deforestation 
(Bera et al., 2022; Gayen & Saha, 2018).

Recently, machine learning techniques have also been 
applied in various types of prediction models. Deforesta-
tion susceptibility analysis using MCDM methods has 
been extensively employed. MCDM has proven to be a 
reliable approach for analyzing forest loss and facilitating 
the implementation of sustainable forest management.

The deforestation susceptibility zonation maps 
were prepared using the MCDM analysis method 
with a total of 20 explanatory factors. The object-
based CRITIC statistical method was subsequently 
applied to calculate the weights of each parameter. 
Multicollinearity analysis was performed to avoid 
multicollinearity issues among these variables. In 
this paper, we employed the MCDM analysis meth-
ods VIKOR, SAW, EDAS, and WASPAS to assess 
deforestation susceptibility. Among these MCDM 
methods, the VIKOR method demonstrated better 
performance than the others during the validation of 
all four models, as explained in the previous results 
section. In many analyses using MCDM methods, the 
VIKOR model has proven to be more reliable. For 
instance, in a study in the Tarai region of the Hima-
layas, MCDM analysis methods AHP, TOPSIS, and 
VIKOR were used to assess deforestation suscepti-
bility. Among all these methods, the VIKOR model 
emerged as the most reliable (Bera et al., 2022). Dur-
ing a study of forest fire susceptibility in Turkey, all 
three methods used—TOPSIS, AHP, and VIKOR—
were found to be highly accurate, with accuracy lev-
els of 85% to 90%, making them useful for analyz-
ing forest fire susceptibility (Sari, 2021). In another 
study in the sub-Himalayan region of northern West 
Bengal, GIS and three MCDM methods, TOPSIS, 
VIKOR, and EDAS, were used to analyze areas of 
flood susceptibility. During this analysis, both TOP-
SIS and VIKOR methods were found to be reliable 
(Mitra & Das, 2022). In yet another study in the 
Murshidabad district of West Bengal, aimed at pre-
paring a groundwater susceptibility map, the VIKOR 
model was highly efficient among the three MCDM 
methods used in the study—TOPSIS, VIKOR, and 
EDAS (Paul & Roy, 2024). Therefore, the reliability 
of the VIKOR method during susceptibility analysis 
in different areas has been well demonstrated, and 
our analysis also shows VIKOR to be a more accu-
rate and reliable method.

According to our study, the susceptibility maps 
prepared using the VIKOR model indicate that 
Assam, Tripura, and Arunachal Pradesh are highly 
susceptible to deforestation. Deforestation is influ-
enced by factors such as altitude, slope, slope aspect, 
and distance from roads, settlements, rivers, and for-
est edges (Gayen & Saha, 2018). With the significant 
presence of the Brahmaputra River and easier access 
to forest edges by road in Assam, the forest areas of 
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Assam could be highly susceptible to deforestation. 
The forest areas in Arunachal Pradesh are particularly 
vulnerable to climate change. According to the cli-
mate change exposure hotspot map of forest cover in 
2030, prepared by the Forest Survey of India (2021), 
which takes into account the combined changes in 
temperature and precipitation, the northern part of 
Arunachal Pradesh is highly vulnerable to climate 
change (Forest Survey of India, 2021). The Forest 
Survey of India (2021) report also highlighted that the 
major forest areas of Mizoram, Nagaland, Manipur, 
Meghalaya, and Tripura experienced frequent forest 
fires in 2020–2021, which could contribute to for-
est loss. Shifting cultivation (Jhum) is widespread 
among the tribes living in the hilly terrains of the 
northeastern states, constituting about 86 percent of 
the region’s total cultivated area (Haokip et al., 2021). 
The slash-and-burn practices of the prevalent shifting 
(Jhum) cultivation in the northeast region are a major 
factor in the loss of forest areas in northeastern India. 
This was identified as a significant cause of forest loss 
during 2017–2019, according to the Forest Survey of 
India, 2021).

Limitations and future scopes: Measures to minimize 
deforestation and protect remaining forest areas

While the study is impactful, it faces some limitations 
due to the nature of the adopted methodology. The 
’CRITIC’ model, an objective weighting approach, 
does not incorporate expert opinions or field obser-
vations, which may introduce potential errors. Since 
this method is newly applied in deforestation suscep-
tibility assessment, it lacks comparative analysis with 
previous studies. Additionally, several key factors 
driving deforestation, such as shifting cultivation and 
forest fires, were not addressed in this study. Further-
more, the HGFC method only collects data on trees 
taller than 5 m, thus neglecting smaller trees.

Despite these research processes and hypothesis 
limitations, the study’s results are valid and scien-
tifically sound, suitable for adoption in future stud-
ies in regions with similar geo-environmental con-
ditions. For future research, hybrid MCDM models 
such as E-VIKOR (Entropy-VIKOR), E-EDAS 
(EntropyEDAS), E-SAW (Entropy-SAW), E-WAS-
PAS (Entropy-WASPAS), AHP-VIKOR, AHP-
SAW, etc. can be applied. Additionally, various 
ensemble machine learning algorithms (REPTree, 

MLP-bagging, MLP-dagging, MLPnn, etc.) can be 
used to determine deforestation susceptibility zones 
in this region.

The study emphasized the need for a multifaceted 
approach that combines regulatory, technological, and 
community-based strategies to effectively address the 
challenges of deforestation in the Northeast region of 
India. These recommended measures were developed 
in consultation with local stakeholders, environmental 
experts, and policymakers to ensure their relevance 
and feasibility. Not only do these strategies aim to 
curb deforestation, but they also seek to enhance the 
resilience of forest ecosystems and the communities 
that depend on them. Based on the research findings 
focused on deforestation dynamics in the Northeast 
region of India, it is imperative to implement specific 
measures aimed at minimizing deforestation and pro-
tecting the remaining forest areas. The recommenda-
tions outlined below are derived from a comprehen-
sive analysis of the drivers, patterns, and impacts of 
deforestation observed in the region, supplemented 
by a rigorous evaluation of potential conservation 
strategies. We propose the following recommenda-
tions to minimize deforestation and protect forests:

1. Strengthening Regulatory Frameworks: Enhance 
the enforcement of existing forestry laws and pol-
icies while revising them to address current gaps 
and inefficiencies. Implement stricter controls on 
illegal logging and land conversion activities, and 
introduce incentives for compliance with forest 
conservation efforts.

2. Community-Based Forest Management (CBFM): 
Empower local communities through CBFM pro-
grams that include them in the decision-making 
process for forest management. Provide training 
and resources to help communities engage in 
sustainable forestry practices, which can lead to 
improved forest stewardship and economic ben-
efits from forest resources.

3. Afforestation and Reforestation Programs: Ini-
tiate large-scale afforestation and reforestation 
projects to restore degraded forest lands. Utilize 
native species to ensure ecological compatibility 
and resilience, and tailor tree planting efforts to 
local climate and soil conditions to enhance sur-
vival rates.

4. Use of Technology in Monitoring and Enforce-
ment: Leverage advanced technologies such as 
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remote sensing, drones, and GIS for real-time 
monitoring of forest cover changes. These tools 
can aid in the early detection of illegal activities 
and facilitate prompt enforcement actions.

5. Promotion of Alternative Livelihoods: Develop 
and promote alternative livelihood options for 
communities reliant on deforestation-prone 
activities. This strategy can include agroforestry, 
ecotourism, and other sustainable agricultural 
practices that provide economic benefits without 
depleting forest resources.

6. Education and Awareness Programs: Implement 
comprehensive education and awareness cam-
paigns to inform the public about the importance 
of forests and the adverse impacts of deforesta-
tion. Educational programs should target schools, 
local communities, and stakeholders involved in 
land-use decisions.

7. Strengthening Biodiversity Conservation Initia-
tives: Integrate biodiversity conservation into for-
est management plans. Establish and expand pro-
tected areas, particularly in biodiversity hotspots, 
to conserve critical habitats and endangered spe-
cies.

8. Collaborative Research and International 
Cooperation: Foster collaborative research on 
sustainable forestry and conservation tech-
niques between local universities, interna-
tional organizations, and government agen-
cies. Encourage participation in international 
forestry conservation programs to exchange 
knowledge and resources.

9. Policy Integration and Multisectoral Coordina-
tion: Ensure that forest conservation measures are 
integrated into broader land-use, agricultural, and 
developmental policies. Establish coordination 
mechanisms among various governmental and 
non-governmental entities to align efforts and 
optimize resource utilization.

Conclusions

This study evaluated deforestation susceptibility zones 
from 2001 to 2021 in the Seven Sister States of North-
east India. Key findings indicate a substantial decline 
in forest cover, with the region experiencing an aver-
age forest loss of 10.49% over two decades. Arunachal 
Pradesh had the highest initial forest cover in 2000, 

while Tripura had the lowest. Mizoram exhibited the 
highest percentage of forest cover relative to its geo-
graphical area. The study reveals that Nagaland expe-
rienced the greatest percentage loss of forest cover, 
whereas Arunachal Pradesh had the least relative loss. 
Additionally, Assam displayed the highest mean annual 
deforestation rate, whereas Tripura had the lowest.

The research also utilized multiple deforestation 
susceptibility models (VIKOR, SAW, EDAS, and 
WASPAS) to categorize the regions based on their 
vulnerability to deforestation. The models produced 
varying results; VIKOR identified Assam, Tripura, and 
Arunachal Pradesh as highly susceptible to deforesta-
tion, while Mizoram, Nagaland, and Manipur were cat-
egorized as less vulnerable. Model validation through 
ROC and Cohen’s kappa indices highlighted VIKOR 
as the most reliable method, demonstrating good to 
very good predictive capability across the board.

The data analysis directly correlates with the 
conclusions drawn regarding the varying degrees 
of deforestation susceptibility among the states. 
For instance, the VIKOR model’s categorization of 
Assam, Tripura, and Arunachal Pradesh as highly 
susceptible aligns with the observed high mean 
annual forest loss in these states. The significant for-
est loss recorded in Nagaland (23.44%) compared to 
the lower loss in Arunachal Pradesh (4.20%) is con-
sistent with their susceptibility classifications from 
the models. The discrepancies in susceptibility iden-
tified by the different models underscore the impor-
tance of selecting appropriate methods for accurate 
deforestation risk assessment, as reflected in the sig-
nificant performance differences among the models.

The findings of this study have several implica-
tions for forest conservation and policy-making. 
The high susceptibility to deforestation in states like 
Assam and Tripura suggests an urgent need for tar-
geted conservation efforts and stricter forest manage-
ment policies in these regions. The results indicate 
that conservation strategies should be tailored to the 
specific deforestation risks of each state, consider-
ing the varying levels of susceptibility. Policymakers 
should consider enhancing forest protection meas-
ures, promoting sustainable land-use practices, and 
increasing community involvement in conservation 
efforts. The high performance of the VIKOR model 
in predicting deforestation susceptibility suggests that 
it could be a valuable tool for guiding policy deci-
sions and resource allocation.
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This study makes a significant contribution to the 
field of forest management and deforestation analy-
sis by providing a comprehensive evaluation of forest 
cover dynamics and susceptibility to deforestation in 
Northeast India. By employing multiple deforestation 
susceptibility models and validating their results, the 
research offers a nuanced understanding of regional 
variations in deforestation risk. The study enhances 
the existing knowledge base on forest loss patterns 
and susceptibility, providing a valuable reference for 
future research and policy development. The detailed 
analysis of model performance and susceptibility 
mapping also contributes to improving the methodolo-
gies used in deforestation studies. The findings of this 
study can provide valuable insights for policymakers, 
government representatives, and forest officials, guid-
ing them in taking effective measures for deforestation 
management and promoting environmental sustain-
ability in these regions of Northeast India.
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